
Pagebreaks: Multi-Cell Scopes in Computational Notebooks
Eric Rawn

erawn@berkeley.edu
University of California, Berkeley

Berkeley, CA

S. E. Chasins
schasins@berkeley.edu

University of California, Berkeley
Berkeley, CA

Figure 1: A Pagebreak is a language construct for adding a scope around multiple Jupyter Notebook cells. Left: A notebook
using Pagebreaks. A Variables defined within the indented cells can only be used within a defined portion of the notebook.
Unlike defining the same variables inside a function, the Pagebreak does not interfere with key exploratory interactions, such
as B: interleaving code and its output, C: using cells as impromptu versions, and D: iteratively composing programs with
single-line cells. E: Only variables exported at the bottom of a Pagebreak are available for other cells. For example mean_ratings
is available in the bottom Pagebreak, but ratings_by_title is not. Right: In contrast, functions provide scopes at the cost
of these exploratory interactions. F: Functions prevent iterative composition or using cells as impromptu versions inside a
function body. G: Functions prevent interleaving code and output; instead all printed output from a function appears together
at the call site, not interleaved with the function body. Example adapted from [30].

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
CHI ’25, April 26-May 1, 2025, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-XXXX-X/18/06.
https://doi.org/10.1145/3706598.3713620

ABSTRACT
Global variables lie at the root of many programmer complaints
about computational notebooks. While programmers in other envi-
ronments often address these barriers with function scopes, note-
book programmers use functions less often. Analyzing the interac-
tion between user behaviors, the programming language, and the
notebook environment, we propose one possible explanation: that
functions interfere with using notebooks in the exploratory ways
users value. For example, because partial functions are not parseable,

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://doi.org/10.1145/3706598.3713620

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Rawn, et al.

they cannot be run in isolation, so programmers cannot split func-
tion bodies across cells to iteratively tweak and rerun the last few
lines. To explore how to offer non-global scopes without hampering
exploratory notebook interactions, we built Pagebreaks, a small
language construct for adding scopes around multiple Jupyter Note-
book cells. In an in-situ study, we explored how programmers used
Pagebreaks to manage variables with non-global scopes but also
to visually and conceptually organize programs in a way akin to
functions.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; • Software and its engineering→Development frameworks
and environments.

KEYWORDS
Computational Notebooks; Exploratory Programming; Data Sci-
ence; Scope
ACM Reference Format:
Eric Rawn and S. E. Chasins. 2025. Pagebreaks: Multi-Cell Scopes in Com-
putational Notebooks. In CHI Conference on Human Factors in Computing
Systems (CHI ’25), April 26-May 1, 2025, Yokohama, Japan. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3706598.3713620

1 INTRODUCTION
Computational notebook users often experience barriers and confu-
sions related to the pervasive use of global variables [7, 9, 43, 49, 52,
57]. For example, they must often (i) trace global variables through-
out a large notebook [13, 23, 52], (ii) avoid accidentally overwriting
commonly used names (e.g. df or model) [13, 57], and (iii) when a
notebook contains multiple definitions in different cells, they must
remember which cell they have run more recently [36, 44].

In non-notebook programming environments, programmers of-
ten use functions to reduce the number of global variables they
need to track. Functions accomplish this by introducing non-global
scopes. In lexically scoped languages [1], like almost all modern
programming languages, a name defined in a non-global scope may
only be used in a defined segment of the source file (e.g. between
lines 22 and 29). For instance, if the name x is defined inside func-
tion foo, and the body of foo’s function definition appears in lines
130–145 of the source file, xmay only appear in lines 130—145. Out-
side of notebook programming, non-global scopes—constraining
where names can be used—are a popular approach for reducing
the confusion associated with global variables [14]. According to
previous qualitative findings, however, functions are sometimes
used sparsely in notebook programs [10, 20].

We explore why notebook programmers might be reluctant to
use functions: we find that functions impede the exploratory interac-
tions many users value about notebooks. Kery identifies three core
exploratory behaviors: (1) using cells as impromptu alternatives,
(2) interleaving code and its output, and (3) composing a program
by iteratively editing and running a one-line cell representing the
next line to be added [20, 45]. Importantly, all of these behaviors
rely on multiple cells having access to the same variables. We bring
together these and other qualitative findings about user behav-
iors with an analysis of both the programming language (Python)

and the programming environment (Jupyter [11]/IPython [32]).
Looking at Python and Jupyter, we know that function definitions
cannot be split across multiple cells—they must appear entirely
within a single cell. This means that variables defined inside a func-
tion are accessible only inside a single cell. Now we can observe
that exploratory behaviors and functions are in tension: For the
exploratory behaviors above, multiple cells read and write the same
variables, but variables defined in functions can only be read and
written in a single cell.

This work introduces a construct for getting a key benefit of
functions—non-global scopes—without impeding exploratory in-
teractions. We present the Pagebreak, a language construct im-
plemented for Jupyter Notebooks which allows users to create
non-global scopes around multiple notebook cells. We used both
of the analyses described above—the analysis of how functions
interfere with notebook programming and the analysis of how
global variables confuse notebook programmers—to frame design
requirements for our construct. We hypothesize that non-global
scopes may be able to address notebook programmers’ issues if
they could be separated from the aspects of functions that ham-
per exploratory behaviors. We implement Pagebreaks in a pair of
Jupyter and IPython plugins which together allow users to create
scopes around groups of cells via the notebook UI.

We conducted an in-situ [42] user study with five participants,
asking them to use Pagebreaks in their own work for two weeks.
We conducted a thematic analysis [4] of the 1–1.5 hour interviews
we conducted with each participant about their experience. Our
analysis focused in particular on what sessions revealed about the
role of scoping constructs—including Pagebreaks and functions—
in participants’ day-to-day notebook programming. Participants
reported that Pagebreaks helped them address many of the issues
we previously identified, and did not seem to impede exploratory
behaviors. Besides these questions, the themes developed from our
analysis show the range of organizational roles Pagebreaks played
for participants. We also observed that participants used the word
"function" to refer to a great variety of different program compo-
nents — sometimes referring to one cell, to some of the code within
one cell, or sometimes to groups of cells. Notably, this included code
which did not have function definitions, including Pagebreaks. We
discuss how this connects to the roles that Pagebreaks and scopes
play in their programming process.

We present the following contributions:
(1) The design of a language construct, the Pagebreak, and its im-

plementation for Jupyter Notebooks. A Pagebreak introduces
a scope around one or more cells.

(2) An in-situ qualitative user study in which we interviewed
participants after they used Pagebreaks in their own note-
books over the course of two weeks. We present findings
on the role of Pagebreaks, but also scopes more broadly,
including function scopes.

2 RELATEDWORK
2.1 How Notebook Programmers Program
Notebook programmers commonly write code with highly ex-
ploratory goals [2]: to investigate an idea, experiment with an
approach, or test a potential solution. In notebook programming,

https://doi.org/10.1145/3706598.3713620

Pagebreaks: Multi-Cell Scopes in Computational Notebooks CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Kery observed exploratory "expand-reduce" behavior: iteratively
developing small (1-2 line) cells and organizing them into larger
groups later [23]. Programmers used cells to represent different "log-
ical units" of work, where cells that were alternatives of each other
or accomplished related work were grouped into different "thematic
regions" of the notebook [23]. Splitting cells into smaller units was
also identified as a “fairly instantaneous and straightforward” de-
bugging strategy, allowing code to be split "into different cells and
then slowly stitching them together until you get something that
works right” [7], echoing Kery’s notion of "expand-reduce" behav-
ior (also discussed by Robinson et al. in their study of notebook
debugging strategies [41]). Cells also sometimes serve as improvisa-
tional versions when programmers selectively run cells that serve
as alternatives [13, 23].

Because exploratory programmers often do not prioritize modu-
larity or reusability (at least not in the moment), the "investment"
required to organize exploratory code into functions was often
found too onerous [20, 31]. "High-Quality Code" practices such
as organizing code into functions, or moving code into separate
Python scripts and modules were described as "counter-productive"
for exploratory uses of notebooks [36]. Wrapping existing code
into functions was described by Dong et al. [10] as a "cleaning
activity", done at the end of the programming task, which only
occurred within notebooks in their sample intended for use in a
larger pipeline or workflow.

2.1.1 Quantitative Research On Notebook Programming. Quantita-
tive research has focused primarily on large-scale analyses of cor-
pora like Github, analyzing the structure and development of note-
books as they’re put into version control. This has included analyses
to restore appropriate dependencies to Jupyter Notebooks [55], un-
derstanding sensemaking behaviors [37], cleaning behaviors [10],
and characterizing notebook code into distinct steps of a work-
flow [38]. Other work has focused on studying code duplication
in notebooks [25, 27]. These studies reveal important aspects of
working with Jupyter Notebooks. Our qualitative study, rather than
focusing on specific steps like documenting, cleaning, data prepa-
ration, notebook organization, and visualization, instead focuses
on characterizing participants’ interactions with scopes, especially
with functions and Pagebreaks.

2.2 Obstacles in Notebook Programming
Previous work has identified many issues notebook programmers
face. Because cells can be manually executed one-at-a-time, running
cells out of the programmer’s intended order can cause unexpected
results [7, 9, 43, 49, 52, 57]. For instance: accidentally omitting a
cell from execution can cause runtime errors [36], cells may be
organized in an order other than the intended execution order,
causing problems when users attempt to run the entire notebook
linearly [44], and non-idempotent operations can create notebook
states which are difficult to reason about and reproduce [49]. Be-
cause cells read from and write to a shared global state, defining
the same variable in multiple cells can make it difficult to trace
the code that last defined it—i.e. the value that other cells actu-
ally accessed [52]. This leads some programmers to continually
rename modified dataframes and other repeatedly modified objects

with similar names (e.g. "df_1 and df_2" [57]). This addresses one
confusion but often introduces new ones [13, 57].

While using cells as alternatives or iterations might be an effec-
tive exploratory strategy, previous work finds that programmers
often struggle to manage the complexity of these notebooks once
they get sufficiently large [13, 23]. Programmers will often move
code into separate notebooks to manage notebook length, starting
explorations anew by copying over just the relevant code. Alterna-
tively, they may engage in "cleaning" [10, 13, 23] — deleting cells
which were made to debug or explore an alternative and combining
cells together into larger units of work — which often requires
significant transformation of their programs and the loss of their
exploration history.

2.3 Research Systems in Computational
Notebooks

Previous systems research on computational notebooks has primar-
ily focused on either notebook organization or adding additional
context into the programming environment.

Previouswork has explored visually organizing notebooks through
cell folding interactions [44], annotation and hierarchical organiza-
tion [6], searching notebooks with natural language and visualiza-
tion [28], visualizing notebooks [51, 58], two-dimensional notebook
layouts [12], and notebook cleaning through slicing techniques [13].
The Pagebreaks implementation uses cell folding and labeling ideas
from Rule et al. [44] (now a part of Jupyter by default), but this is
not central to Pagebreaks. Where Head et al. [13] focus on strip-
ping extraneous cells from a "messy" notebook for sharing in the
post-exploration phase, Pagebreaks instead focuses on supporting
notebook programmers in avoiding issues and confusions through-
out their development.

Previous work has also investigated ways to show various kinds
of contextual information in notebook interfaceswithmargin notes [19],
collaborative discussions [54], and automatic capture of contextual
interactions [33].

Other research has focused on tools for recording, organizing,
and managing notebook version history [21, 22]; bringing direct
manipulation interactions into notebook environments through
code generation [24]; interactive visualization construction [59];
and embedding notebooks inside other notebooks [15].

A large amount of work on notebooks has focused on reproduce-
ability [3, 8, 34, 35, 39, 44, 55], documenting and sharing notebooks
with others [18, 53, 56], and creating notebooks with unambiguous
run orders [40]. These concerns often occur after programmers com-
plete exploratory work; as Rule et al. [45] argue, exploratory behav-
iors are in direct tension with using notebooks to share and explain.
At this post-exploration stage, programmers create a notebook to
showcase results, give a reproducible analysis to a collaborator,
or incorporate code into a production pipeline. While these con-
cerns are important, our contribution here is focused on supporting
individual notebook users in their exploratory programming.

Each of these projects explores an important area of computa-
tional notebooks. While we share a common focus on studying and
supporting notebook users, the current project focuses on how to
support notebook programmers in organizing their notebook state
using scopes.

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Rawn, et al.

2.3.1 StateManagement in Computational Notebooks. Weare aware
of two prior research systems aimed at managing computational
notebook state, although neither explore the possibilities of programmer-
defined scopes. Weiman et al. [57] serializes the entire global state
after each cell run. This allows users to inspect the state before and
after a cell run. By feeding a serialized state into a fresh IPython
session, programmers can also “fork” state, then compare the states
side-by-side in the same Jupyter interface. In Dataflownotebooks [26]
users explicitly annotate how they want variables to flow between
cells, building up a directed acyclic graph via using cell identifiers
with variables names. Cells may not use a variable unless the pro-
grammer has added an edge between the source node (the cell that
defines the variable) and the sink node (the cell that uses the vari-
able) by using the source node’s identifier within the sink node.
Within a single cell, variables may be shared freely. Although this
approach certainly does not prevent multiple cells from using the
same variables, it does mean that variables are only shared by de-
fault within a single cell. The Dataflow intervention was aimed at
replication [26], rather than exploration, so we should not expect a
good fit with our own goals of supporting exploratory interactions.
Indeed, our analysis revealed the importance of freely sharing the
same variables across multiple cells during exploration, so we did
not consider an explicit per-variable dataflow annotation approach
for our purposes. Note that no prior work has proposed a system
that shares variables freely across multiple cells—other than the
standard approach of using global variables. Still, at a high level
these works share the goal of helping notebook programmers han-
dle the messiness of notebook state, at some stage in the notebook
programming process.

A plugin for IPython and Jupyter has explored an approach for
splitting global state [47]. While this approach may be helpful for
some users, it still allows cells anywhere in the notebook to modify
and define any other variable, a key part of what lexical scopes are
designed to prevent.

2.3.2 Notebook Analysis Techniques. Techniques for analyzing Jupyter
notebooks have included ways to detect name-value inconsisten-
cies [31] and data leakage between training and test sets [60]. Sub-
otić et al. introduced a formal notebook executionmodel to compute
the abstract state of the notebook under different combinations of
run-orders [50]. Other systems have analyzed execution order to
detect "stale" state [29]. Head et al. utilize traditional program slic-
ing techniques to extract "clean" slices of a "messy" notebook [13],
while Shankar et al. later developed a dynamic, notebook-specific
slicing technique [48]. This work does not introduce a new analy-
sis technique. However, because some analysis tools are aimed at
finding instances of problems that Pagebreaks can solve (e.g. stale
state), it is easy to see how they are complimentary. For example,
if a programmer had not used Pagebreaks during their develop-
ment process to date, they could use a whole-notebook analysis
tool to find places where Pagebreaks might help them avoid future
problems.

3 FUNCTIONS IMPEDE KEY NOTEBOOK
INTERACTIONS

Previous work has observed that notebook programmers tend not to
use functions during iterative or exploratory use of notebooks [20,

31], and that they often write functions as a post-hoc organization
step [10]. This leads us to ask:Why might notebook programmers
use functions less often? In this section, we suggest an answer based
on combining (i) existing qualitative findings about notebook pro-
grammers with an an analysis of (ii) the programming environment
(Jupyter/IPython) and (iii) the programming language (Python).

Technical Observations: Functions live in one cell, and
variables defined in functions live in one cell We’ll first make
two technical observations about the JupyterLab/IPython environ-
ment:

Observation 1:
Function definitions cannot be split across multiple cells.

When a user runs a notebook cell, IPython parses and runs just
that cell; the notebook environment thus enforces that each cell
is parseable in isolation. Because partial function definitions are
not individually parseable in Python, the entire function definition
must appear in a single cell.

Observation 2:
Variables defined within a function are not persisted in

the global state.

Python uses lexical scoping [1] and standard function scopes [16].
With lexical scoping and function scopes, variables defined within
a function body can only be accessed within that same function
body. Function scopes thus give both programmers and compiler
developers useful guarantees about when a name can no longer be
used. 1 Global variables, in contrast, are “in scope” in any part of
the source code. We use the term global state to refer to the set of all
global variables whose definitions have already been run. All cells
in a notebook can read, update, or introduce global variables. In a
notebook programming environment, global variables represent
the primary means of communicating across cells; one cell can
write to a global variable, and a cell executed later can read from
it. In contrast, variables defined in a function body are not written
into the global state—they are available strictly within the function
body. Since functions are constrained to appear in their entirety
in a single cell, this means that variables defined in a function are
available only within a single cell.

User Operations: Functions limit organization across cells
and variable inspection Next, we connect these observations
to user “operations” within Jupyter notebooks, asking: What op-
erations become difficult or impossible in Jupyter Notebooks due to
Observations 1 and 2? First, organizing code across cells—splitting
cells, migrating code between cells, and merging cells—becomes
more difficult. Because functions must be defined in individual cells,
code within function bodies cannot be split across multiple cells
without removing it from the function definition, changing the
program’s control flow. Utilizing cells as ways to manually direct
control flow thus becomes more difficult with the use of functions.
Second, because local variables defined within functions are not

1This is not the case in all languages, such as languages that use dynamic scope, or in
some cases in Python, such as running Python in a debug mode, or using the "global"
keyword.

Pagebreaks: Multi-Cell Scopes in Computational Notebooks CHI ’25, April 26-May 1, 2025, Yokohama, Japan

persisted in the global state, users cannot inspect or use those vari-
ables in later cells. Communicating between cells thus becomes
more difficult when we use functions.

Exploratory Interactions: Cells as alternatives, interleav-
ing code and output, and small cells for exploring next steps
Finally, we connect the operations that are difficult with functions—
organizing code across cells, inspecting variables after the cell in
which they’re defined—to exploratory interaction patterns. Existing
qualitative findings about notebook usage tell us why losing these
operations might hamper an exploratory workflow. Kery identifies
three practices for the exploratory notebook programming style
they termed "expand-reduce behavior": 1. Cells functioned as small
alternative versions, allowing a programmer to experiment with
different approaches, 2. Because the cell output appears immedi-
ately after the cell, small cells allowed programmers to interleave
code and output, aiding inspection and reasoning, and 3. Novice
programmers tend to use single-line cells during their development
process, repeatedly editing and running a one-line cell representing
the next line to be added to a larger program [20].

With our technical observations in hand, we can see how func-
tion use inhibits each of these practices:

Cells as alternatives: Kery et al. [20] identified an “alternatives
workflow,” in which programmers manually decide control flow
by running one of two cells (or groups of cells). This typically
involves a structure (shown in Figure 2) in which: (i) one or more
“upstream” cells write values into the global state, setting up all
inputs to the alternative cells, (ii) two ormore “alternative” cells read
the same values from the global state and write different values
(with the same names) to the global state, and (iii) one or more
“downstream” cells read the values written by the most recently
executed alternative. The programmer directs control flowmanually
by executing the upstream cells, one of the alternative cells, then
the downstream cells. Clearly, since this alternatives workflow
centers on manually directing control flow via picking which cell
to run, and function bodies must be contained within a single cell,
programmers cannot use this workflow within a function body.
Achieving this workflow also requires all three of the components—
upstream, alternatives, and downstream—to have access to the
same variables. This means that not only is it impossible to use
this workflow within a function body, but even using a function
for part of the process interferes with the workflow. That is, if
the upstream cells define variables within a function scope, the
alternatives cannot read them. If the alternatives define variables
within a function scope, the downstream cells that react to the
various alternatives cannot read those. While there are of course
other non-cell ways of exploring alternatives, the key point here is
that functions hamper this specific cell-based alternatives workflow.

Small cells for displaying intermediate values interleaved
with code: Because function bodies cannot be split across cells,
users cannot print intermediate outputs alongside the statements
that produce them. While adding print statements within a func-
tion body allows programmers to display all printed intermediate
values at once, those printed values appear together—not inter-
leaved with the relevant statements—and they appear where the
function is called rather than where the function is defined. Recall
that notebook programmers use small cells in order to show inter-
mediate outputs right alongside the line that produced them. print

statements thus do not allow notebook programmers to recover the
benefits of interleaving code and output for function bodies.

Building programs one line at a time: Following the same
logic as above, users cannot iteratively compose a program a single
line at a time when that composition is within a function. Kery [20]
identified that especially novice programmers valued being able to
see the immediate consequences of running one- or two-line cells.
They used repeated runs of these small cells to confirm assumptions
or catch confusions before moving on. This workflow relies on
statements being easily spread between multiple cells. It also relies
on the program’s behavior remaining stable if a list of cells is run
in sequence or if the cells’ contents appear together within a single
cell in the same order. If moving a line of code between cells also
means moving it in or out of a function body, these are not safe
assumptions.

Functions Interfere with Exploratory Workflows From this
analysis, we can offer one possible hypothesis for why functions
may not appeal to notebook users: Functions interfere with
the iterative, flexible style which many users value about ex-
ploratory notebook programming. Specifically, we hypothesize
that functions seem to interfere with users’ ability to 1. use cells as
alternatives, 2. display intermediate outputs alongside the code that
produces them, and 3. flexibly inspect the results of just 1–2 lines
of code appended to a longer code block. From our analysis of op-
erations, we posit that these interactions demand: 1. In order to use
cells to manually direct control flow, programmers need to flexibly
move code in and out of cells without changing overall program
behavior 2. In order to communicate between cells, programmers
need multiple neighboring cells to share easy access to variables.

By analyzing the programming environment, language, and find-
ings about users together, we can now place a design requirement
on our system: that any intervention must preserve these three
exploratory interactions in order to avoid the same drawbacks of
functions in notebook environments.

4 GLOBAL VARIABLES ARE AT THE ROOT OF
MANY NOTEBOOK PROGRAMMING
STRUGGLES

In the previous section we hypothesized that using functions in
notebooks seems to inhibit many of the exploratory interactions
that draw users to notebook programming. Notebook program-
mers flexibly split programs into cells as a way to manually direct
control flow, which allows them to: create impromptu alternatives,
interleave code and output, and iteratively develop 1- or 2-line
code snippets at the end of their programs. Because cells must be
parseable in isolation from the rest of the program, any given func-
tion or object is constrained to just one cell; thus, programmers
can’t use variables defined in function scopes to communicate be-
tween cells. Instead, communicating across cells means writing and
reading global variables.

Using global variables as the primary way to communicate be-
tween cells, however, seems to come with costs. Given how often
use of global variables is discouraged in traditional programming
environments [14, 46], it seems unsurprising that notebook pro-
grammers report a number of confusions and issues with managing
a large number of them. As we discussed in Section 2.2, notebook

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Rawn, et al.

Figure 2: Notebook programmers can use cells as alternatives by manually changing the execution order. Left: A sample
program. An "upstream" cell a = 5 writes a, a global variable. Two alternative cells, b = 6 + a and b = 2 + a, both read the
global variable a. They both also write a global variable, b, although they write different values to b. Finally a "downstream"
cell, c = b + 1, reads the global variable b. Right: A representation of two different executions of the notebook on the left.
The programmer can explore the alternatives one at a time. If the programmer runs cells 1, 2, and 4, they see the outcome on
the left. If they run cells 1, 3, and 4, they see the outcome on the right. By only executing one of the two alternative cells, the
programmer makes c dependent on only one alternative, allowing them to experiment with the results of each alternative
iteratively.

programmers can face compounded difficulties because cell run
order is not fixed, so the program text is not enough to tell a pro-
grammer which variable definition ran last.

Some programmers attempt to mitigate the hardships of tracing
global variables through notebooks by using a series of related
names for key variables—e.g. datasets that are modified throughout
a notebook. One participant in Weinman et al. [57] recounts using
"either uninformative names like df_1 and df_2, or increasingly
onerous names like df_no_personality", but would then often
"forget about the names and then have to go up and reread how
they defined it." While Weinman et al. discuss this user’s issues in
the context of defining alternatives, the underlying technical issue
is a scope problem: because any cell can redefine any variable in the
global state, programmers struggle to guess which cell or sequence
of cells updated a variable’s value en route to the current state. In
the context of alternatives, this means programmers struggle to
ensure that two related sets of variables do not interact without
making new variable names.

The number of global variables and the distance between writes
and reads can also confuse programmers. Notebook programmers
struggle when they change a variable’s name without changing
cells elsewhere in the notebook that read from the old name [52].
Head and Kery both found that the complexity imposed by keep-
ing track of a growing global state and run order, in part, created
practical length limits on notebooks [13, 23], leading programmers
to start new notebooks when the existing one became too diffi-
cult to understand. Because the global state is persistent over cell
runs, Rule et al. recommend regularly restarting and running the

entire notebook in linear order to ensure the current global state is
reproducible [43]. This advice, however, does not fit situations in
which programmers want to run only one alternative cell in a set
of alternatives. It also imposes a time cost if some computations are
time-intensive. Managing many global variables, aside from leading
to errors, also then seems to heighten the burdens of tracing and
understanding a notebook.

In short, managing a large global state can be confusing because
the programmer must keep track of many interacting variables
at once. This can be especially problematic in notebooks, where
running cells to direct control flow can result in the assignment
of different values to those variable names depending on the cell
execution order.

The issues mentioned above are closely related to what lexical
scopes are intended to address in other programming environ-
ments. Lexical scopes separate programs into discrete source code
segments, in which programmers can tell whether names are valid
based on their place in the text of the program. In essence, scopes
segment programs into smaller, discrete units that programmers
can reason about in isolation [14].

5 IMPLEMENTING NOTEBOOK SCOPES
WITHOUT FUNCTIONS

So far we have examined both how functions impede users and
how global variables impede users. If we want to avoid both func-
tions and global variables, what tools do we have available? In
the previous section, we traced the connection between global

Pagebreaks: Multi-Cell Scopes in Computational Notebooks CHI ’25, April 26-May 1, 2025, Yokohama, Japan

variables and many of the well-known difficulties associated with
notebook programming. In other programming environments, we
often avoid proliferating global variables by using functions and
function scopes. But in a notebooks context, functions hamper de-
sirable exploratory interactions, as we explored in Section 3. This
suggests a next question: Can we get scopes without functions?

Here we note that a function serves many different purposes—it
names a chunk of code, provides a way to run the code multiple
times, a way to name parameters, provides new control flow op-
tions based on being able to return mid-function, and it introduces
a scope. However, we can achieve that last purpose without repro-
ducing this whole list of disparate roles. That is, we can introduce
a stripped-down language construct that does much less than func-
tions, while still offering scopes.

Our analysis in the previous sections has outlined a set of design
requirements for an intervention:

• Writing functionless programsmeans giving up scopes, which
produces large global states. To do better than functionless
programming, our new construct should give program-
mers a way to communicate between cells without
writing into global state.

• Using functions to achieve scopes means giving up cell-based
manual control over control flow. To do better than using
functions, our new construct should allow programmers
to independently execute an arbitrary number of com-
municating cells.

Taken together, these requirements suggest a construct which
includes multiple cells inside a single non-global scope.

From these design requirements we built Pagebreaks, which al-
lows contiguous groups of Jupyter notebook cells to share a non-
global scope. The name is an analogy to "page breaks" in a document
editor, which visually segment long documents into conceptually
distinct regions. Pagebreaks segment a notebook program into re-
gions that share a scope. While a new Pagebreak also produces
visual segmentation, it most importantly changes the meaning of
the program. Pagebreaks is implemented as a Jupyter interface plu-
gin with a paired IPython extension. The plugin allows users to
organize cells into Pagebreaks through the Jupyter interface, and
it transforms the Python programs behind the scenes when the
programmer executes a cell.

A single Pagebreak is a grouping of cells that share a scope. Vari-
ables defined in that scope are available to all cells in the Pagebreak.
Variables defined in a nested scope—e.g. a function defined in a cell
inside the Pagebreak—remain available only in the nested scope, as
we would expect in Python.

Programmers add Pagebreaks to a notebook using a button, as
shown in Figure 3, which creates a "header" markdown cell and a
"footer" raw text cell. The code cells between the header and footer
are indented to visually indicate the extent of the Pagebreak, remi-
niscent of the indentation of statements within a function definition.
Users do not have to change the code inside their code cells to use
Pagebreaks; the location of a cell within the header and footer cells
indicates that it will execute within the Pagebreak scope. When the
user executes a cell, the Pagebreaks system automatically sends the
information about the cell’s scope to the IPython environment.

Users can choose to "export" variables from a Pagebreak, making
them readable by later cells, by including them in the "footer" cell,
marked by the export {...} syntax. Variables exported in this
way remain modifiable inside the Pagebreak where they are defined,
but cells in later Pagebreaks cannot modify them. We highlight two
key Pagebreaks design choices:

Pagebreak Scopes Are Linearly Ordered. Following the exist-
ing metaphor of the Jupyter notebook as an ordered list of cells,
variables "exported" from a Pagebreak become available to all later
(i.e. visually below in the notebook) Pagebreak scopes, and remain
inaccessible to earlier (i.e. visually above in the notebook) Page-
break scopes. Prior work indicates that running cells in non-linear
order is a key component of exploratory workflows; however, this
workflow did not include reading variables that are defined later in
the notebook, a practice that would guarantee that linear notebook
runs will error. For example in Figure 3, Pagebreak B defines and ex-
ports a variable date, which is available for all Pagebreaks visually
below Pagebreak B (and any cell within Pagebreak B), but is not
available in Pagebreak A, as shown in cell [3]. (Cells in Pagebreak
A would also be unable to define a variable date, since a date has
already been exported by another Pagebreak.) The availability of
exported variables depends on the order of the Pagebreaks when a
cell is executed, not the order of Pagebreaks when the variable was
first added to the program text. Thus if (in Figure 3) Pagebreak A
was dragged below Pagebreak B and cell [3] in Pagebreak A was
executed, it would run without error, because date is exported by
a Pagebreak that would appear earlier in the notebook. Our linear
order design also ensures that no cyclical dependencies between
Pagebreaks are possible, which could be a source of confusion.

Read-Only Exports. While iteratively modifying a shared name
was an important part of exploratory notebook interactions, redefi-
nitions were also a source of confusion in larger notebooks, espe-
cially when it occurred far from the original definition. To support
iterative modification of a shared name between nearby cells while
seeking to alleviate the confusion of modifications to shared names
throughout a large notebook, Pagebreaks enforces that exported
variables are read-only outside of the Pagebreak which exports
them. For example, in Figure 3, the variable banana is defined in
Pagebreak A, and could be redefined by any cell in Pagebreak A
without error; in Pagebreak B, however, attempting to define the
variable banana results in an error from the Pagebreaks system (as
shown in cell [6]), because banana has been exported by another
Pagebreak. Because Python does not have a built-in way to enforce
that a variable cannot be modified, the Pagebreaks system imple-
ments this internally. Before cell execution, Pagebreaks analyzes
the cell’s AST (Abstract Syntax Tree) to identify any attempted mod-
ifications to an exported variable outside its original Pagebreak,
and, if it finds one, will throw an error. Since some modifications
cannot be identified statically, Pagebreaks also uses dynamic analy-
sis, comparing the value of exported variables before and after a
cell run to look for changes; the system automatically reverts the
notebook state and displays a warning message if a cell attempts
to modify a read-only variable dynamically.

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Rawn, et al.

Figure 3: The Pagebreaks Interface. 1. Pagebreak A includes three definitions of variables, for apple, banana, and clementine.
All cells in Pagebreak A share access to these variables; e.g. cell [2] can read or write apple, banana, and clementine, which
are defined in cell [1]. 2. Variable banana is exported from Pagebreak A and becomes available to later Pagebreaks, including
Pagebreak B, in a read-only form. 3. Pagebreak B contains a new definition of apple. This introduces a new variable apple in
Pagebreak B’s scope, not a redefinition of the apple defined in Pagebreak A. Because banana has been exported from Pagebreak A,
it can also be read in Pagebreak B. 4. Because exported variables are read-only, attempting to redefine banana within Pagebreak
B produces an error. 5. Because variable clementine was only defined in Pagebreak A and not exported, attempting to print it in
Pagebreak B produces an error, since clementine is not in scope in Pagebreak B. 7. We added three context menu buttons, from
left to right: (1) Add New Pagebreak (2) Merge Pagebreak Above (3) Run All Cells in Pagebreak.

Pagebreaks: Multi-Cell Scopes in Computational Notebooks CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 4:We recreate the example program in Figure 2 within
a Pagebreak to illustrate each of the exploratory interactions
we aim to preserve: (1) Cells as Alternatives: Within a Page-
break, neighboring cells have access to the same variables
(above, variable b), so Pagebreaks support the alternatives
workflow. (2) Interleaving Code and Outputs: A Pagebreak
can include multiple cells, so code and output can be inter-
leaved as usual, as shown above. (3) Building Programs a
Line at a Time: Neighboring cells in a Pagebreak can read
and write the same variables, so users can freely split one or
two lines out of a longer code snippet, in order to iteratively
edit and rerun one subprogram at a time. Here see that cell 4
can use b as part of a new snippet, even though b is defined
in another cell.

5.0.1 Implementation. The Pagebreaks system implements scopes
by transforming variable names before the Python interpreter ex-
ecutes a given cell. The Pagebreaks "backend," an IPython plugin,
transforms the AST of a program before it is executed, prepending
user-provided variable names with a prefix unique to each Page-
break. For example, a variable a in Pagebreak 0 would be renamed
pb_0_a. Only variables defined in the Pagebreak scope are trans-
formed; variables defined in nested scopes inside the Pagebreak—
e.g. within a function or class definition—are left unchanged, as
are package imports. We provide an IPython “magic command” for
seeing the list of untransformed names associated with each Page-
break. Users can see the prefixes by inspecting the notebook state
with the debugger or the built-in IPython magic %who_ls. Other-
wise variable name prefixes are invisible to the user, allowing them
to utilize non-global scopes without having to understand how
they are implemented. Because we implement Pagebreak scopes by
transforming the AST representation of each program, the Page-
breaks system can run as a layer between IPython and the Python
interpreter without requiring a modification of either system.

For our in-situ study, we also implemented many features to
integrate Pagebreaks into a Jupyter environment, such as collaps-
ing and dragging entire Pagebreaks, merging Pagebreaks together,
running all cells within a Pagebreak in order, and an option to save
a notebook with its transformed variable names represented in the
text of the cells, enabling users to share a notebook with others
without the extension installed.

Pagebreaks is implemented in ~3500 lines of Typescript and ~1100
lines of Python, and is available open-source.2

6 USER STUDY DESIGN
To understand how Pagebreaks interacts with notebook program-
ming behaviors in real situations, we introduced Pagebreaks to
five experienced notebook programmers and invited them to use it
in-situ [42] in their everyday work for about two weeks each.

6.0.1 Participants. We recruited participants from social media
(Reddit and Jupyter Forums) and relevant academic email lists. We
used a screening survey to select participants who were using
Jupyter notebooks regularly in their work. At the beginning of the
studywemetwith each participant to introduce them to Pagebreaks,
address questions, and ensure they had sufficient information to
give informed consent. Participants were compensated for the time
they spent interviewing at $30/hr.

At the end of the trial period, we interviewed participants about
their experiences for 1-1.5 hours, asking them to narrate the note-
books they worked onwithin a semi-structured interview.We asked
them for feedback on Pagebreaks and to describe how they used
it within the context of their programming. All interviews were
recorded over Zoom and transcribed for analysis.

6.0.2 Analysis. We analyzed the interview data in a thematic anal-
ysis [4]. Since our study specifically investigates the role of scopes
in notebook systems, our analysis emphasized a theoretical focus,
in that the analysis prioritized producing a deep description of the
role of scopes in particular, rather than seeking to characterize our
participants’ responses broadly. Apart from focusing on scopes, we
were also driven by the framing described in Sections 3 and 4 to
look for interactions between Pagebreaks and both the exploratory
interactions and programming barriers identified in previous work.
Additionally, for many of our participants distinguishing between
a function and its specific effect as a scoping construct was not a
familiar way of speaking. Thus our analysis was often latent, as
we had to interpret the role of scopes (and other elements of the
programming language and environment) within the experiences
of our participants. For example, some of our participants used the
word "function" to describe code without a function definition, or
described Pagebreaks as "functions", which we analyze in Section
7.4. While these mark areas of emphasis in the study rather than
formal dimensions [5], they highlight how we brought our specific
interests and expertise as human-computer interaction and pro-
gramming languages researchers to developing themes. The first
author transcribed and performed an initial coding, and themes
were developed iteratively between the first and second authors.

2Source available at https://github.com/erawn/pagebreaks

https://github.com/erawn/pagebreaks

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Rawn, et al.

ID Position Domain of Expertise Yrs. Programming Yrs. using Notebooks
P1 Computer Science/Data Science Student/Researcher 5 3
P2 Data Science Student 3 2
P3 Computer Science Student 8 1
P4 Computer Science Researcher 6 5
P5 Computer Science Researcher 14 9

Table 1: While our participants had varying backgrounds, each had significant experience with both programming in general
and computational notebooks

7 FINDINGS
We present two overarching categories of findings from our anal-
ysis. First, we discuss the role of Pagebreaks in our participants’
programming practices: Many participants found Pagebreaks useful
in alleviating issues with global variables (Sec. 7.1) while still feeling
free to use notebooks in familiar ways (Sec. 7.2). We also saw that
Pagebreaks seemed to play many organizational roles for our par-
ticipants (Sec 7.3). Second, in talking about the role of Pagebreaks,
our participants often relied on comparisons to functions, and so
our second category of findings focuses on the role of functions and
scopes in general in notebook programming (Sec 7.4). Our partici-
pants helped us understand many of the barriers they face when
they try to use functions and how they avoided those barriers, both
before the study period with their usual notebook programming
strategies and within our study period by using Pagebreaks.

Because we asked participants to use Pagebreaks however it was
useful to them in their everyday work, there were varying levels of
engagement. P4 used Pagebreaks extensively, creating a notebook
entirely in Pagebreaks which was the focus of their notebook pro-
gramming during the trial period. P2 used Pagebreaks to organize
a data cleaning workflow for a current side project. P3 was a data
science student, who used Pagebreaks for some of their assign-
ments, but ran into problems using the course’s autograder system
with Pagebreaks. P5 used a very lengthy notebook during the study
period, adding a small number of pagebreaks because the notebook
was predominantly being used to execute the already written code
on a remote server, and not for active development. P1 worked
on a large research project within a single notebook, but because
of changing project timelines, completed the research as the trial
period was beginning, and used Pagebreaks in order to understand
its functionality but not in their active work. The interviews shifted
focus based on participants’ usage: for P4, P2 and P3, the interview
focused on how they had used Pagebreaks in the study period. For
P5 and P1, the interview focused on the notebooks work they had
done before the study period, narrating the development of their
notebook and discussing how they would like to use Pagebreaks,
now that they had used it enough to understand its functionality.

7.1 Participants Used Pagebreaks to Help
Address Issues with Global Variables

Participants (P3, P4, P1) discussed a number of ways Pagebreaks
helped alleviate some of the issues of managing a large number
of global variables. First, P3 and P4 mentioned being able to reuse
common variable names (e.g. model, train, test) in different Page-
breaks without fear that they would accidentally redefine a variable

elsewhere in the notebook. P4: "If I’m trying to implement some-
thing and I defined something down below just to test something,
and I gave it the same name as something else, within Pagebreaks
I know I don’t have to worry about that (P4)". P1 mentioned diffi-
culties with overwriting variables which were used throughout the
notebook, such as dataset variables like df or data, and becoming
confused about which variable definition had run most recently.
Because P1 had written this code directly prior to the study period,
they said that Pagebreaks would have been helpful in avoiding that
issue, and they wished they had had it earlier.

Participants also mentioned that Pagebreaks enabled them to
avoid giving successive names to different versions of variables (P4
and P3), a practice designed to mitigate global variable confusion.
P4 mentioned that, in contrast to using Pagebreaks, in traditional
notebooks, "I had to get very creative with the names ... I had to
give [each new definition] a new variable name ... like [process1,
process2]". P3 said that in "Pagebreaks you can really just have the
same [variable names] ... you can call them both ‘model’ without
having it conflict" and said it makes notebooks "clearer".

7.2 Participants Continued to Engage in
Exploratory Behaviors While Using
Pagebreaks

In discussing how they had used Pagebreaks, many participants
mentioned using notebooks in exploratory ways, including making
alternatives (P4, P2, P3, P1), interleaving code and output (P3), and
iteratively composing programs (P3). P4 used neighboring Page-
breaks to explore two different "scenarios (P4)", utilizing the same
variable names and common functions to compare results. P2 used
Pagebreaks to hold different versions of the same dataset variable in
different stages of cleaning. P3 highlighted that before using Page-
breaks, they would use cells to organize code, which sometimes
resulted in "putting everything into one big cell (P3)" which did not
interleave code and output. Pagebreaks allowed them to "break that
up into a process and put more explanation" by using multiple cells
to express a section of their program and interleave intermediate
results. P3 also drew attention to how Pagebreaks supported itera-
tive composition: "To me the benefit of Jupyter notebooks is that
you can run things line-by-line in cells ... and I think of Pagebreaks
doing that but to a higher level (P3)".

Because we did not ask explicitly about these behaviors for fear
of biasing the data, and our goal with Pagebreaks was not neces-
sarily to enhance these exploratory interactions but only to leave
them unaffected, we did not expect participants to actively mention
these exploratory interactions unless Pagebreaks had interfered.

Pagebreaks: Multi-Cell Scopes in Computational Notebooks CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Nevertheless, some participants did explicitly mention experiences
remaining stable; P4 and P3 mentioned that they felt their interac-
tions with notebooks to be largely unchanged. P4 said that Page-
breaks aided their programming process "but not in a way requiring
changes from me (P4)" and that the adoption of Pagebreaks "was a
pretty seamless transition (P4)". P3 said something similar: "I feel
like I’m still tied to using Jupyter in the same way, but you have
this [i.e. Pagebreaks], which makes it nicer (P3)". No participants
mentioned that Pagebreaks made their exploratory interactions or
work with notebooks in general more difficult.

7.3 Participants Used Pagebreaks for
Organization

Our participants described a number of different ways Pagebreaks
helped them organize their code. While these were often described
together, in our analysis we separated different facets of what this
organization meant for our participants.

7.3.1 Compartmentalization. Many participants (P4, P1, and P2)
mentioned that a benefit of Pagebreaks was being able to focus
on just one part of their notebook at a time. By scoping a section
of the notebook, in other words, they had an assurance that their
code in one Pagebreak would not affect their code in others: "It
gives me [a] guarantee that I know that what I’ve run is what is
meant to be running (P4)". This seems to have helped prevent a class
of confusing issues, when common names have different values
than expected because of the run order of the cells (detailed in 7.1),
but importantly do not error and "lead me down the wrong track
because the order I ran the cells was not the correct one (P4)".

7.3.2 Dataflow Organization. One participant also mentioned that
Pagebreaks helped them be more cognizant of the variables coming
into and out of each Pagebreak by requiring variables to be explicitly
exported: "it makes me thinkmore about the namespace of variables
... [makes me] more intentional about ... [what] I want to export
from one Pagebreak to another ... [and] the things I want to reuse
(P4)."

7.3.3 By-Purpose Organization. Apart from the actual scope en-
forced by Pagebreaks, many participants mentioned that Page-
breaks helped them group cells which accomplished a discrete
task, encouraging them to reflect on the purpose of their code
throughout development (P2 and P3). P2 said that they were "more
conscious (P2)" of what they intend to accomplish when they make
a new Pagebreak, and that Pagebreaks encourages them to divide
the notebook into more sections based on those intentions. P3 drew
an explicit comparison to the way they used cells to organize code,
describing Pagebreaks as "another layer of organization on top of
[notebook cells] (P3)" which each contain "a subset of cells (P3)"
which have a defined purpose.

Both P3 and P2 also mentioned being able to give the Pagebreak
a title (because the top cell of a Pagebreak is a markdown cell),
which was an important part of organizing by purpose: "...it was
very useful when I named the Pagebreak what I did [within] it (P2)".

7.4 Functions in Notebook Programming
Many participants used the term “function” to describe sections
of their notebook programs which had no function definitions.

P1 and P5 both referred to large cells with defined purposes (but
without function definitions) as "functions" while explaining their
notebooks to us, using words like "parameters" and "arguments"
to refer to variables defined in previous cells which were used
within the "function" below. We use "function" in quotes to refer to
our participants’ words and function without quotes to refer to a
standard function definition.

Some of our participants used the language of "functions" to also
describe their experiences with Pagebreaks. When P4 discussed
how using Pagebreak prompted them to think about dataflow in
their notebook (see Sec 7.3.2), they said they were "thinking of
the Pagebreak in and of itself as a function (P4)" not just because
of its role as a way to introduce scopes, but because they were
"thinking of pagebreaks as functions, its now a pretty useful mental
model, like ’whats the input and output of this Pagebreak’ (P4)." P5
proposed using Pagebreaks in place of a function definition in order
to persist intermediate variables, and P1 discussed using Pagebreaks
to contain different "function" variants.

Because both the language of "functions" and function definitions
were prominent in how our participants discussed their program-
ming and their use of Pagebreaks, we discuss how our participants
discussed “functions” alongside some of the issues our participants
encountered when using functions. We also describe how partici-
pants used Pagebreaks to address some of these issues.

7.4.1 Participants Talked About Parameterization. Both P1 and P5
discussed cells in their notebooks as "functions," cells which accom-
plished key units of work which took in "parameters" or "inputs" in
the form of global variables defined in other cells. By duplicating
cells where "parameter" global variables were defined or iteratively
redefining them in-place, then re-running the "function" cell, they
could see the results (outputs from the "function" cell) across these
multiple different "inputs." Working this way caused confusion,
however, when variables in the "parameters" cells could be updated
and the "function" cell was not rerun, or users could not remember
which version of the "function" cell output corresponded to which
version of the "parameter" cells.

By using global variables and manually directing control flow via
executing cells, these participants used some cells as "parameters"
to a corresponding "function" code cell, without using a function
definition. P1 mentioned that Pagebreaks would have been helpful
in these parameterization workflows, using a non-global scope to
pair separate versions of these "parameter" variables with duplicates
of a "function" cell they had made.

7.4.2 Outside Functions, Intermediate Values Persist By Default.
When asked about the benefits of Pagebreaks in their notebook pro-
gramming, P5 mentioned wanting to use Pagebreaks to organize a
part of their program rather than use a function definition in order
to persist intermediate variables in partial executions. For time-
intensive computations, they explained, if there is an error within
a function body, none of the variables defined within that function
are persisted in the global state (and the function, of course, does
not return). In a Pagebreak (or in a standard notebook, outside of a
function) intermediate variables are still accessible after an excep-
tion. If intermediate variables are still accessible, P5 explained, they
can continue the computation from the last intermediate variable

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Rawn, et al.

definition that ran successfully. Crucially, this persistence of inter-
mediate variables was beneficial in the case of an unexpected error,
when the participant would not know in advance what variables to
persist; to avoid having to guess what to persist, they avoided using
a function altogether and persisted all of them as global variables.

On the other hand, P1 mentioned that global variables persisting
on partial executions can sometimes cause additional confusions.
When they used variant "parameter" cells which defined a series of
global variables with different values and ran a large "function" cell
which partially executed, or ran multiple "function" alternatives
at the same time, they were unsure which values corresponded to
which "function" execution, and under which parameters: "...espe-
cially when these cells sequentially have the exact same variable
names, because they’re essentially the same cells with different
parameters, I don’t even know what result holds right now ... ob-
viously you can go from the run numbers, but while one cell is
partially running, and I don’t know what errored and what didn’t—
it’s complicated (P1)." P1 mentioned that using a Pagebreak scope
would have been helpful in order to separate these alternate ver-
sions, so that variables defined from partial executionwere persisted
separately from other alternatives.

7.4.3 Separation between Function Definition and Call Site was
Sometimes Undesired. P1 had a practice of placing a function def-
inition in the only cell that calls it. When multiple cells included
calls to the same function, they would make these cells contiguous
and put the function definition in the first cell that calls it. This
practice helped them avoid tracing code throughout the notebook
when running a cell with a function call: "I tend to keep [function
calls and their definitions] quite close together, so I’m doing one
computation in one particular section (P1)." In short, P1 wanted to
use functions to avoid code duplication (they wanted the option to
call a function repeatedly), but they did not want to use functions
as a mechanism for transferring control from one region of the
source code to another. Since the ability to transfer control between
source code regions is often a benefit of using functions in other
programming environments, P1’s rejection of this function role is
notable here.

8 DISCUSSION
8.1 In Defense of "Messy" Programming
One common theme of the language participants (P1, P4, P5) used
to describe their notebook programming was "lazy" or "messy",
especially with regard to why they had not used more function
definitions in their notebooks. Given the many sources which urge
using functions and avoiding running cells "out-of-order" [36, 43,
49], it is perhaps unsurprising that many of our participants spoke
this way about their notebook programming practices.

One insight of this paper is to help explain why notebook users
continue to program in ways they recognize as unstructured or
error-prone: following the "best practices" of notebook program-
ming might force them to give up the exploratory interactions
they value. Our user study of Pagebreaks suggests that notebook
programmers might not simply need "better habits", but better pro-
gramming environments — environments which do not make them
choose between exploration and organization. The participants

which called themselves "lazy" recognized the value of functions in
traditional software environments, but, for many of the reasons we
have discussed, did not feel that the cost of function use was worth
it — they made a reasonable choice about the most appropriate
ways to use their programming systems. P4 discussed their choice
to use functions in notebooks as a threshold: when the confusion
caused by not using a function outweighed the burden imposed by
using one (which was usually only when code was being repeated
three or more times). The positive reception of Pagebreaks by our
participants suggests that making a new Pagebreak presented a
smaller burden than making a function, and so helped notebook
programmers use more scopes. At least in this case here, when
programmers are given constructs to better organize "messy" code
which do not interfere with how they want to work, they seem to
use them.

8.2 Breaking Open Functions
The idea of breaking apart functions and focusing just on non-
global scoping was not obvious to researchers in advance, nor was
it obvious for our participants: scopes were so closely associated
with functions for our participants that for many we could explain
what Pagebreaks did only by analogy to local variables within func-
tions. Isolating scopes from functions with Pagebreaks, however,
helped some of our participants avoid issues with global variables
while supporting their exploratory notebook programming. As our
framing in Sections 3 and 4 tries to argue, this separation was a key
part of both Pagebreaks’ design and, we think, its success.

Additionally, separating scopes from functions also helped us un-
derstand something about how programmers view both scopes and
functions, which we would not have learned without Pagebreaks as
an intervention. In our user study, we found many different roles
that just scopes could play in notebook programming, and the ways
"functions" appeared in programmers’ descriptions of code which
had no function definitions.

8.3 Designing for Programming Languages and
Programming Environments Together

One critical piece of how we framed and designed Pagebreaks was
thinking across the design of the language (Python) and the pro-
gramming environment (IPython/Jupyter). Our initial analysis in
Sections 3 and 4 connected user findings with environment im-
plications and suggested that functions, as a language construct,
presented specific difficulties when used in notebooks due to the
interactions of the Python language (i.e. parseability, non-persistent
local variables), the IPython system (i.e. individual cells must be
parseable, only global variables persisted) and the Jupyter en-
vironment (i.e. functions cannot be defined across cells, passing
references between cells requires global variables).

While the intended functionality of Pagebreaks (scopes across
multiple cells) was conceptually simple, implementing it required
engineering on each of these levels, which are often thought of
separately: Pagebreaks transforms the ASTs of the programs based
on the visual organization of cells in the Jupyter interface, creating
dynamic "export" variables within the IPython instance.

Throughout this paper, we have described Pagebreaks as a "lan-
guage construct" to refer specifically to the part of the work that

Pagebreaks: Multi-Cell Scopes in Computational Notebooks CHI ’25, April 26-May 1, 2025, Yokohama, Japan

changes the semantics of users’ programs and the results of run-
ning those programs. In the course of implementing Pagebreaks,
we also introduced changes to the programming environment—e.g.
different color backgrounds for different Pagebreaks, visual inden-
tation of code cells within a Pagebreak, adding buttons for creating
and modifying Pagebreaks, etc. While programming "languages"
and "environments" are often understood as distinct, we would
echo the call of Jakubovic et al. to view both more holistically as
common elements of programming systems [17]; even though we
find it useful in this paper to talk about which parts of our work
change program semantics in contrast to those which change inter-
face elements, study participants’ language suggests they do not
draw this distinction in practice. In Jakubovic’s terminology, our
work is an attempt to understand Python, IPython, and Jupyter as
interlocking elements of one common programming system, and
designing an intervention for that system.

8.4 Designing for Programming Languages,
Programming Environments, and
Programming Audiences Together

Beyond thinking about the interactions between programming
languages and programming environments, Pagebreaks also re-
quired integrating user findings to understand the environment
and language implications of users’ specific priorities and behaviors.
Thinking across these three layers was important both for under-
standing our design choices and making sense of our participants’
experiences.

Our findings on organization suggest that these three layers
were required to understand our participants: in describing how
Pagebreaks "organized (P2, P4)" their notebooks or made themmore
"clear (P2, P3)", participants referred jointly to how Pagebreaks
visually organized their notebook interface through color-coding
and visual hierarchy, how it organized code by-purpose into distinct
units, how it compartmentalized their code by enforcing a scope
boundary at the language level, and how it delineated the dataflow
— the variables coming in and out of a Pagebreak — at the system
level. While we separated these facets in our analysis, for many
of our participants they seemed to play a single role of organizing
their code.

Thinking about the language and system implications of user be-
haviors became necessary to understand our system design choices
as well: P5 mentioned they would like to create Pagebreaks in the
middle of existing notebooks in order to gradually transition it to
entirely using Pagebreaks, while P3 envisioned using Pagebreaks
only within the context of making alternatives, with the rest of the
notebook not using Pagebreaks. This revealed an assumption we
had made in the design process: that Pagebreaks were most easily
understood as structuring a whole notebook, and that users should,
therefore, start a notebook with Pagebreaks in mind or reorganize
an existing notebook entirely into Pagebreaks.

When discussing the possibility of creating normal, global-scoped
cells alongside Pagebreaks, P4 strongly disagreed, saying the change
"goes against the point of Pagebreaks, having [cells] in between
[Pagebreaks] (P4)." As P4 explained, the "point of Pagebreaks" for
them was the assurance that, within a given Pagebreak, only vari-
ables defined within it or explicitly exported from other Pagebreaks

were in scope. Allowing cells to directly write variables to the global
state — bypassing Pagebreaks — threatened this assurance (at least
for P4).

While the technical solution to this problem may be simply to
have a setting to toggle between two modes, the insight is that
scopes played different roles for users with different priorities. This
decision on the design of Pagebreak scopes could not be separated
from the practical role those scopes played for different users.

9 OPPORTUNITIES FOR DESIGN: THREE
LENSES

Building on the insights from the discussion above, we turn them
outwards towards future work, reframing them as lenses on design.

Problem Discoveries: Turn Complaints about Notebook
Users Into Opportunities for Language Constructs.

Expanding on our discussion of "lazy" or "messy" notebook pro-
gramming in Section 8.1, we propose seeing notebook program-
mers’ lack of adherence to "best practices" as an opportunity for
design. As this work tries to show, if notebook programmers are
using functions less often, it might be because their systems have
been poorly supporting function use in the ways they desire to
work. In contrast to the usual problem discovery method of looking
for problems, or looking for where users are struggling, might we
also look at “best practices” recommendations to find jumping off
points for design? Calls for best practices may point us to situations
where programmer needs and goals are in tension with how their
programming environments are shaping their behaviors.

Problem Definitions: Look at the Language, System, and
Audience Together

As we discuss in Section 8.4, language designs that are effective
in traditional programming environments (like function definitions
in Python) may not be the right designs for other environments like
notebooks. Future work in notebook programming environments
which does not consider the language, the environment, and the
audience together may be leaving important inspiration on the
table.

Problem Solutions: Break Open Language Constructs
The key insight for the design of Pagebreaks was that scopes

do not have to be bundled up in functions. As researchers, we had
initially assumed (like our participants) that established language
constructs like functions are the only ones available, and we ini-
tially focused on mitigating the problems of functions. Ultimately
we picked a different path, introducing an alternative language con-
struct with specific attention to how it fit into both the environment
and the needs of our users.

In our own design process, listing functions’ many different roles
was a very useful exercise. Rather than taking a language construct
like a function as fixed, there are opportunities to break a construct
into its component parts, take one part in isolation, recombine parts,
or combine parts of multiple mainstream constructs. We hope this
work will inspire deeper reflection about the roles of language
constructs and inspire more opportunities for redesigning them.

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Rawn, et al.

10 LIMITATIONS
Because our study was time-intensive from both a researcher and
participant perspective, it was both difficult to recruit many suit-
able participants and support them during the study period (e.g.
responding to bugs with fixes, assisting if confusions arose, etc).
More participants, especially given the diversity of how users in-
teract with notebooks, would have given us a greater diversity of
experiences, or helped us see additional contexts where Pagebreaks
was or was not successful.

Beyond the number of participants, the duration of the study
(~2 weeks), was sometimes not sufficient for the often sporadic
use of notebooks by our participants. Even when participants were
using notebooks they sometimes were not actively writing code for
periods longer than our study duration (as in P5’s case). A longer
studywould have allowed us to observe Pagebreaks’ use throughout
a full development process.

Because one goal of Pagebreaks was to leave exploratory note-
book interactions unaffected, we faced difficulty assessing this di-
rectly in qualitative analysis of interviews, since participants were
much more likely to mention the differences they had noticed upon
using Pagebreaks rather than what did not change about their pro-
gramming practices. A different kind of analysis which focused
on fine-grained, keystroke-level data, either through video taping
or recording telemetry data about users’ programming, might be
required to rigorously assess how these behaviors did or did not
change.

Looking towards a complete release of Pagebreaks, we look for-
ward to implementing two features suggested by our study: (1)
customizing the colors and styles of Pagebreaks visually through
the settings menu (which was requested by P2 and P7 at the con-
clusion of the study) and (2) highlighting exported variable names
with the color of their associated Pagebreak, helping users more
easily identify exported variables throughout the notebook.

11 CONCLUSION
This work began with observing a tension: notebook programmers
reported confusions with global variables but did not seem to use
functions to address them. To understand why and work towards
possible solutions, we analyzed the programming environment and
programming language alongside user behaviors, finding that func-
tions seem to inhibit many of the exploratory interactions users
value. We then designed a system, Pagebreaks, by isolating the part
of functions we needed—non-global scopes—and ensuring that our
new language construct did not interfere with these exploratory
interactions. We gave Pagebreaks to notebook programmers to use
in their own work, and they reported Pagebreaks alleviated some
of the issues with global variables and that they could still use their
usual notebook programming interactions. Our study also revealed
the many ways participants used Pagebreaks to organize their pro-
grams and how they used and talked about scoping constructs more
broadly. We hope this work inspires others to break open language
constructs, find opportunities in "lazy" programming practices, and
think about environments, languages, and users as three parts of
one whole.

ACKNOWLEDGMENTS
The authors would like to thank our study participants for their
time and thoughtfulness, our reviewers for their suggestions and
insights, and Justin Lubin and Parker Ziegler for their feedback and
guidance. This work is supported in part by the National Science
Foundation, under grants FW-HTF 2129008, CA-HDR 2033558, and
2243822 as well as by gifts from Google, G-Research, Adobe, and
Microsoft. Chasins is a Chan Zuckerberg Biohub Investigator.

REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2014. Compilers:

principles, techniques, and tools (second edition, pearson new international edition
ed.). Pearson, Harlow.

[2] Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, Raleigh, NC, 25–29. https://doi.org/10.1109/vlhcc.2017.8103446

[3] Michael Brachmann, William Spoth, Oliver Kennedy, Boris Glavic, Sonia Castelo,
Carlos Bautista, and Juliana Freire. 2020. Your notebook is not crumby enough,
REPLace it. In Proceedings of the 10th Conference on Innovative Data Systems,
Heiko Mueller (Ed.). Conference on Innovative Data Systems Research (CIDR),
Amsterdam, Netherlands, 16.

[4] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2 (Jan. 2006), 77–101. https://doi.org/10.
1191/1478088706qp063oa QID: Q30476519.

[5] Virginia Braun andVictoria Clarke. 2019. Reflecting on reflexive thematic analysis.
Qualitative Research in Sport, Exercise and Health 11, 4 (Aug. 2019), 589–597.
https://doi.org/10.1080/2159676x.2019.1628806

[6] Souti Chattopadhyay, Zixuan Feng, Emily Arteaga, Audrey Au, Gonzalo Ramos,
Titus Barik, and Anita Sarma. 2023. Make It Make Sense! Understanding and
Facilitating Sensemaking in Computational Notebooks. https://doi.org/10.48550/
arXiv.2312.11431 arXiv:2312.11431 [cs].

[7] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376729

[8] Frederick Choi, Sajjadur Rahman, Hannah Kim, and Dan Zhang. 2023. Towards
Transparent, Reusable, and Customizable Data Science in Computational Note-
books. In Extended Abstracts of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI EA ’23). Association for Computing Machinery, New
York, NY, USA, 1–8. https://doi.org/10.1145/3544549.3585807

[9] Taijara Loiola De Santana, Paulo Anselmo Da Mota Silveira Neto, Eduardo San-
tana De Almeida, and Iftekhar Ahmed. 2024. Bug Analysis in Jupyter Notebook
Projects: An Empirical Study. ACM Trans. Softw. Eng. Methodol. 33, 4 (April 2024),
101:1–101:34. https://doi.org/10.1145/3641539

[10] Helen Dong, Shurui Zhou, Jin L.C. Guo, and Christian Kästner. 2021. Split-
ting, Renaming, Removing: A Study of Common Cleaning Activities in Jupyter
Notebooks. In 2021 36th IEEE/ACM International Conference on Automated Soft-
ware Engineering Workshops (ASEW). IEEE, Melbourne, Australia, 114–119.
https://doi.org/10.1109/ASEW52652.2021.00032 ISSN: 2151-0830.

[11] Brian E. Granger and Fernando Pérez. 2021. Jupyter: Thinking and Storytelling
With Code and Data. Computing in Science & Engineering 23, 2 (March 2021),
7–14. https://doi.org/10.1109/MCSE.2021.3059263 Conference Name: Computing
in Science & Engineering.

[12] Jesse Harden, Elizabeth Christman, Nurit Kirshenbaum, Mahdi Belcaid, Jason
Leigh, and Chris North. 2023. “There is no reason anybody should be using 1D any-
more”: Design and Evaluation of 2D Jupyter Notebooks. Graphics Interface, Victo-
ria, British Columbia, Canada, 13. https://openreview.net/forum?id=Gkogn48LeI

[13] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
2019. Managing Messes in Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. ACM, Glasgow Scotland
Uk, 1–12. https://doi.org/10.1145/3290605.3300500

[14] C. A. R. Hoare. 1983. Hints on Programming Language Design. In Programming
Languages, Ellis Horowitz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
31–40. https://doi.org/10.1007/978-3-662-09507-2_3

[15] Joshua Horowitz and Jeffrey Heer. 2023. Engraft: An API for Live, Rich, and
Composable Programming. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology. ACM, San Francisco CA USA, 1–18.
https://doi.org/10.1145/3586183.3606733

[16] Jeremy Hylton. 2000. Statically Nested Scopes. Python Enhancement Proposal
227. Python Software Foundation. https://peps.python.org/pep-0227/

[17] Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. 2023. Technical Dimen-
sions of Programming Systems. The Art, Science, and Engineering of Programming
7, 3 (Feb. 2023), 13. https://doi.org/10.22152/programming-journal.org/2023/7/13

https://doi.org/10.1109/vlhcc.2017.8103446
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1080/2159676x.2019.1628806
https://doi.org/10.48550/arXiv.2312.11431
https://doi.org/10.48550/arXiv.2312.11431
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3544549.3585807
https://doi.org/10.1145/3641539
https://doi.org/10.1109/ASEW52652.2021.00032
https://doi.org/10.1109/MCSE.2021.3059263
https://openreview.net/forum?id=Gkogn48LeI
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1007/978-3-662-09507-2_3
https://doi.org/10.1145/3586183.3606733
https://peps.python.org/pep-0227/
https://doi.org/10.22152/programming-journal.org/2023/7/13

Pagebreaks: Multi-Cell Scopes in Computational Notebooks CHI ’25, April 26-May 1, 2025, Yokohama, Japan

arXiv:2302.10003 [cs].
[18] DaYe Kang, Tony Ho, Nicolai Marquardt, Bilge Mutlu, and Andrea Bianchi. 2021.

ToonNote: Improving Communication in Computational Notebooks Using Inter-
active Data Comics. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems (CHI ’21). Association for Computing Machinery, New
York, NY, USA, 1–14. https://doi.org/10.1145/3411764.3445434

[19] Jake Kara. 2021. Margo: Margin Notes for Computational Notebooks. A.L.M.
Harvard University, United States – Massachusetts. https://www.proquest.com/
docview/2539589152/abstract/E7A2AA87E6BE428APQ/1 ISBN: 9798738638749.

[20] Mary Beth Kery. 2021. Designing Effective History Support for Exploratory Pro-
gramming DataWork. Ph. D. Dissertation. CarnegieMellon University, Pittsburgh,
Pennsylvania, United States.

[21] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. ACM, Denver Colorado USA,
1265–1276. https://doi.org/10.1145/3025453.3025626

[22] Mary Beth Kery and Brad A. Myers. 2018. Interactions for Untangling Messy
History in a Computational Notebook. In 2018 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). IEEE, Lisbon, Portugal, 147–155.
https://doi.org/10.1109/vlhcc.2018.8506576 ISSN: 1943-6106.

[23] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. 2018. The Story in the Notebook: Exploratory Data Science using a
Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, Montreal QC Canada, 1–11. https://doi.
org/10.1145/3173574.3173748

[24] Mary Beth Kery, Donghao Ren, FredHohman, DominikMoritz, KanitWongsupha-
sawat, and Kayur Patel. 2020. mage: Fluid Moves Between Code and Graphical
Work in Computational Notebooks. In Proceedings of the 33rd Annual ACM Sym-
posium on User Interface Software and Technology. Association for Computing Ma-
chinery, New York, NY, USA, 140–151. https://doi.org/10.1145/3379337.3415842

[25] Andreas P. Koenzen, Neil A. Ernst, and Margaret-Anne D. Storey. 2020. Code
Duplication and Reuse in Jupyter Notebooks. In 2020 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC). IEEE, Dunedin, New
Zealand, 1–9. https://doi.org/10.1109/VL/HCC50065.2020.9127202 ISSN: 1943-
6106.

[26] David Koop and Jay Patel. 2017. Dataflow notebooks: encoding and tracking
dependencies of cells. In Proceedings of the 9th USENIX Conference on Theory and
Practice of Provenance (TaPP’17). USENIX Association, USA, 17.

[27] Malin Källén and Tobias Wrigstad. 2021. Jupyter Notebooks on GitHub: Charac-
teristics and Code Clones. The Art, Science, and Engineering of Programming 5,
3 (Feb. 2021), 15. https://doi.org/10.22152/programming-journal.org/2021/5/15
arXiv:2007.10146 [cs].

[28] Xingjun Li, Yuanxin Wang, Hong Wang, Yang Wang, and Jian Zhao. 2021. NB-
Search: Semantic Search and Visual Exploration of Computational Notebooks.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Sys-
tems (CHI ’21). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3411764.3445048

[29] Stephen Macke, Hongpu Gong, Doris Jung-Lin Lee, Andrew Head, Doris Xin, and
Aditya Parameswaran. 2021. Fine-grained lineage for safer notebook interactions.
Proc. VLDB Endow. 14, 6 (Feb. 2021), 1093–1101. https://doi.org/10.14778/3447689.
3447712

[30] Wes McKinney. 2017. Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython. "O’Reilly Media, Inc.", Sebastopol, CA.

[31] Jibesh Patra and Michael Pradel. 2022. Nalin: learning from runtime behavior
to find name-value inconsistencies in jupyter notebooks. In Proceedings of the
44th International Conference on Software Engineering (ICSE ’22). Association for
Computing Machinery, New York, NY, USA, 1469–1481. https://doi.org/10.1145/
3510003.3510144

[32] Fernando Perez and Brian E. Granger. 2007. IPython: A System for Interactive
Scientific Computing. Computing in Science & Engineering 9, 3 (2007), 21–29.
https://doi.org/10.1109/MCSE.2007.53

[33] Philip J. Guo and Margo Seltzer. 2012. BURRITO: Wrapping Your Lab Notebook
in Computational Infrastructure. USENIX Association, Boston, MA, 4. https:
//www.usenix.org/conference/tapp12/workshop-program/presentation/guo

[34] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-Scale Study About Quality and Reproducibility of Jupyter Note-
books. In 2019 IEEE/ACM 16th International Conference on Mining Software Repos-
itories (MSR). IEEE, Montreal, QC, Canada, 507–517. https://doi.org/10.1109/
MSR.2019.00077 ISSN: 2574-3864.

[35] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2021. Understanding and improving the quality and reproducibility of Jupyter
notebooks. Empirical Software Engineering 26, 4 (May 2021), 65. https://doi.org/
10.1007/s10664-021-09961-9

[36] Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. 2022. Eliciting Best Practices
for Collaboration with Computational Notebooks. Proc. ACM Hum.-Comput.
Interact. 6, CSCW1 (April 2022), 87:1–87:41. https://doi.org/10.1145/3512934

[37] Deepthi Raghunandan, Aayushi Roy, Shenzhi Shi, Niklas Elmqvist, and Leilani
Battle. 2023. Code Code Evolution: Understanding How People Change Data

Science Notebooks Over Time. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems. ACM, Hamburg Germany, 1–12. https:
//doi.org/10.1145/3544548.3580997

[38] Dhivyabharathi Ramasamy, Cristina Sarasua, Alberto Bacchelli, and Abraham
Bernstein. 2022. Workflow analysis of data science code in public GitHub
repositories. Empirical Software Engineering 28, 1 (Nov. 2022), 7. https:
//doi.org/10.1007/s10664-022-10229-z

[39] Bernadette M. Randles, Irene V. Pasquetto, Milena S. Golshan, and Christine L.
Borgman. 2017. Using the Jupyter Notebook as a Tool for Open Science: An
Empirical Study. In 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL).
ACM/IEEE, Toronto, ON, Canada, 1–2. https://doi.org/10.1109/jcdl.2017.7991618

[40] Lars Reimann and Günter Kniesel-Wünsche. 2023. An Alternative to Cells for
Selective Execution of Data Science Pipelines. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER). IEEE/ACM, Melbourne, Australia, 129–134. https://doi.org/10.1109/ICSE-
NIER58687.2023.00029 ISSN: 2832-7632.

[41] Derek Robinson, Neil A. Ernst, Enrique Larios Vargas, and Margaret-Anne D.
Storey. 2022. Error identification strategies for Python Jupyter notebooks. In
Proceedings of the 30th IEEE/ACM International Conference on Program Compre-
hension (ICPC ’22). Association for Computing Machinery, New York, NY, USA,
253–263. https://doi.org/10.1145/3524610.3529156

[42] Yvonne Rogers and Paul Marshall. 2017. Research in the Wild. Springer Interna-
tional Publishing, Cham. https://doi.org/10.1007/978-3-031-02220-3

[43] Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas, Shih-Cheng
Huang, Rob Knight, Niema Moshiri, Mai H. Nguyen, Sara Brin Rosenthal, Fer-
nando Pérez, and Peter W. Rose. 2019. Ten simple rules for writing and sharing
computational analyses in Jupyter Notebooks. PLOS Computational Biology 15, 7
(July 2019), e1007007. https://doi.org/10.1371/journal.pcbi.1007007 Publisher:
Public Library of Science.

[44] Adam Rule, Ian Drosos, Aurélien Tabard, and James D. Hollan. 2018. Aiding
Collaborative Reuse of Computational Notebooks with Annotated Cell Folding.
Proceedings of the ACM on Human-Computer Interaction 2, CSCW (Nov. 2018),
150:1–150:12. https://doi.org/10.1145/3274419

[45] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Expla-
nation in Computational Notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM, Montreal QC Canada, 1–12.
https://doi.org/10.1145/3173574.3173606

[46] Saman Amarasinghe, Adam Chlipala, Srini Devadas, Michael Ernst, Max Gold-
man, John Guttag, Daniel Jackson, Rob Miller, Martin Rinard, and Armando Solar-
Lezama. 2014. Reading 3: Testing & Code Review. https://www.mit.edu/~6.005/
fa14/classes/03-testing-and-code-review/#reading_3_testing__code_review

[47] Davide Sarra. 2024. Jupyter Spaces. https://github.com/davidesarra/jupyter_
spaces original-date: 2018-04-10T18:07:16Z.

[48] Shreya Shankar, Stephen Macke, Sarah Chasins, Andrew Head, and Aditya
Parameswaran. 2022. Bolt-on, Compact, and Rapid Program Slicing for Note-
books. Proc. VLDB Endow. 15, 13 (Sept. 2022), 4038–4047. https://doi.org/10.
14778/3565838.3565855

[49] Jeremy Singer. 2020. Notes on notebooks: is Jupyter the bringer of jollity?. In
Proceedings of the 2020 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward! 2020).
Association for Computing Machinery, New York, NY, USA, 180–186. https:
//doi.org/10.1145/3426428.3426924

[50] Pavle Subotić, Lazar Milikić, and Milan Stojić. 2022. A static analysis framework
for data science notebooks. In Proceedings of the 44th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP ’22). Association
for Computing Machinery, New York, NY, USA, 13–22. https://doi.org/10.1145/
3510457.3513032

[51] Krishna Subramanian, Ilya Zubarev, Simon Völker, and Jan Borchers. 2019. Sup-
porting Data Workers To Perform Exploratory Programming. In Extended Ab-
stracts of the 2019 CHI Conference on Human Factors in Computing Systems
(CHI EA ’19). Association for Computing Machinery, New York, NY, USA, 1–
6. https://doi.org/10.1145/3290607.3313027

[52] April Yi Wang, Anant Mittal, Christopher Brooks, and Steve Oney. 2019. How
Data Scientists Use Computational Notebooks for Real-Time Collaboration. Proc.
ACM Hum.-Comput. Interact. 3, CSCW (Nov. 2019), 39:1–39:30. https://doi.org/
10.1145/3359141

[53] April Yi Wang, Dakuo Wang, Jaimie Drozdal, Xuye Liu, Soya Park, Steve Oney,
and Christopher Brooks. 2021. What Makes a Well-Documented Notebook? A
Case Study of Data Scientists’ Documentation Practices in Kaggle. In Extended
Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems
(CHI EA ’21). Association for Computing Machinery, New York, NY, USA, 1–7.
https://doi.org/10.1145/3411763.3451617

[54] April Yi Wang, Zihan Wu, Christopher Brooks, and Steve Oney. 2020. Cal-
listo: Capturing the "Why" by Connecting Conversations with Computational
Narratives. In Proceedings of the 2020 CHI Conference on Human Factors in Com-
puting Systems. Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3313831.3376740

https://doi.org/10.1145/3411764.3445434
https://www.proquest.com/docview/2539589152/abstract/E7A2AA87E6BE428APQ/1
https://www.proquest.com/docview/2539589152/abstract/E7A2AA87E6BE428APQ/1
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1109/vlhcc.2018.8506576
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1109/VL/HCC50065.2020.9127202
https://doi.org/10.22152/programming-journal.org/2021/5/15
https://doi.org/10.1145/3411764.3445048
https://doi.org/10.14778/3447689.3447712
https://doi.org/10.14778/3447689.3447712
https://doi.org/10.1145/3510003.3510144
https://doi.org/10.1145/3510003.3510144
https://doi.org/10.1109/MCSE.2007.53
https://www.usenix.org/conference/tapp12/workshop-program/presentation/guo
https://www.usenix.org/conference/tapp12/workshop-program/presentation/guo
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1007/s10664-021-09961-9
https://doi.org/10.1007/s10664-021-09961-9
https://doi.org/10.1145/3512934
https://doi.org/10.1145/3544548.3580997
https://doi.org/10.1145/3544548.3580997
https://doi.org/10.1007/s10664-022-10229-z
https://doi.org/10.1007/s10664-022-10229-z
https://doi.org/10.1109/jcdl.2017.7991618
https://doi.org/10.1109/ICSE-NIER58687.2023.00029
https://doi.org/10.1109/ICSE-NIER58687.2023.00029
https://doi.org/10.1145/3524610.3529156
https://doi.org/10.1007/978-3-031-02220-3
https://doi.org/10.1371/journal.pcbi.1007007
https://doi.org/10.1145/3274419
https://doi.org/10.1145/3173574.3173606
https://www.mit.edu/~6.005/fa14/classes/03-testing-and-code-review/#reading_3_testing__code_review
https://www.mit.edu/~6.005/fa14/classes/03-testing-and-code-review/#reading_3_testing__code_review
https://github.com/davidesarra/jupyter_spaces
https://github.com/davidesarra/jupyter_spaces
https://doi.org/10.14778/3565838.3565855
https://doi.org/10.14778/3565838.3565855
https://doi.org/10.1145/3426428.3426924
https://doi.org/10.1145/3426428.3426924
https://doi.org/10.1145/3510457.3513032
https://doi.org/10.1145/3510457.3513032
https://doi.org/10.1145/3290607.3313027
https://doi.org/10.1145/3359141
https://doi.org/10.1145/3359141
https://doi.org/10.1145/3411763.3451617
https://doi.org/10.1145/3313831.3376740

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Rawn, et al.

[55] Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2020. Assessing and restor-
ing reproducibility of Jupyter notebooks. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. ACM, Virtual Event
Australia, 138–149. https://doi.org/10.1145/3324884.3416585

[56] Jiawei Wang, Li Li, and Andreas Zeller. 2020. Better code, better sharing: on
the need of analyzing jupyter notebooks. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER ’20). Association for Computing Machinery, New York, NY, USA,
53–56. https://doi.org/10.1145/3377816.3381724

[57] Nathaniel Weinman, Steven M. Drucker, Titus Barik, and Robert DeLine. 2021.
Fork It: Supporting Stateful Alternatives in Computational Notebooks. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(CHI ’21). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3411764.3445527

[58] John Wenskovitch, Jian Zhao, Scott Carter, Matthew Cooper, and Chris North.
2019. Albireo: An Interactive Tool for Visually Summarizing Computational
Notebook Structure. In 2019 IEEE Visualization in Data Science (VDS). IEEE,
Vancouver, BC, Canada, 1–10. https://doi.org/10.1109/VDS48975.2019.8973385

[59] Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
Code and Interactive Visualization in Computational Notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
Association for Computing Machinery, New York, NY, USA, 152–165. https:
//doi.org/10.1145/3379337.3415851

[60] Chenyang Yang, Rachel A Brower-Sinning, Grace Lewis, and Christian KÄStner.
2022. Data Leakage in Notebooks: Static Detection and Better Processes. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. ACM, Rochester MI USA, 1–12. https://doi.org/10.1145/3551349.
3556918

https://doi.org/10.1145/3324884.3416585
https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/3411764.3445527
https://doi.org/10.1109/VDS48975.2019.8973385
https://doi.org/10.1145/3379337.3415851
https://doi.org/10.1145/3379337.3415851
https://doi.org/10.1145/3551349.3556918
https://doi.org/10.1145/3551349.3556918

	Abstract
	1 Introduction
	2 Related Work
	2.1 How Notebook Programmers Program
	2.2 Obstacles in Notebook Programming
	2.3 Research Systems in Computational Notebooks

	3 Functions impede key notebook interactions
	4 Global Variables Are at the Root of Many Notebook Programming Struggles
	5 Implementing Notebook Scopes without Functions
	6 User Study Design
	7 Findings
	7.1 Participants Used Pagebreaks to Help Address Issues with Global Variables
	7.2 Participants Continued to Engage in Exploratory Behaviors While Using Pagebreaks
	7.3 Participants Used Pagebreaks for Organization
	7.4 Functions in Notebook Programming

	8 Discussion
	8.1 In Defense of "Messy" Programming
	8.2 Breaking Open Functions
	8.3 Designing for Programming Languages and Programming Environments Together
	8.4 Designing for Programming Languages, Programming Environments, and Programming Audiences Together

	9 Opportunities For Design: Three Lenses
	10 Limitations
	11 Conclusion
	Acknowledgments
	References

